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Electronical Health Records

Figure: An example of EHR.

X Challenges

Temporal Dynamic: temporal dependencies;

Multi-modality: a single visit contains multiple medical codes;

Unstructured data;

Highly dimensional: thousands of unique medical codes.
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Representation Learning

Definition (Representation Learning Task)
Patient Representation Learning task involves extracting meaningful
information from the dense mathematical representation of a patient
within an embedding space or latent space.

fC : RL → Rm. (1)

[Si, 2021], [Shickel, 2017]
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Representation Learning

3 main Deep Learning strategies

Natural Language Processing [Y. Choi, 2016], [E. Choi, 2016a-d]

Autoencoders [Miotto, 2016], [Landi, 2020], [Baytas, 2017]

Transformers [Li, 2020], [Rasmy, 2021]

3 types of representation

Medical Codes [Y. Choi, 2016], [E. Choi, 2016a,b,d], [Li, 2020], [Rasmy, 2021]

Visit [E. Choi, 2016b-d], [Rasmy, 2021]

Patient [E. Choi, 2016a], [Miotto, 2016], [Landi, 2020], [Baytas, 2017]
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Representation Learning

X Evaluation Method

Quality and Reliability are assessed through the performance resulting
from the prediction task fitted on the embedding space by the mean of
classification metrics mostly.

[Choi, 2016c], [Choi, 2016d], [Miotto, 2016]
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Objectives

Validation of state of the art Representation Learning tools
▶ Quantify their accuracies
▶ Analyse their reliability

1. Fit general latent spaces (unsupervised tools)

Strategy /
Types NLP Autoencoder Transformer

Medical code
Skip-Gram

[Y.Choi, 2016], [E.choi, 2016a]
[E.Choi, 2016d]

-

Visit Med2Vec
[E.Choi, 2016b], [E.choi, 2016c] -

Out of scope

Supervised
Tools

Patient - Deep Patient
[Miotto, 2016]

2. Clustering task
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Skip-Gram

Natural Language Processing
Medical Code Representation [Y.Choi, 2016]

Schema of Skip-Gram.

Patient Representation: sum all the medical codes’ embedded vectors
appearing for a patient [E.Choi, 2016a].

*Theoretical information are provided in Appendix.

7



Introduction Methodology Results Conclusion and Perspectives References

Skip-Gram

Natural Language Processing
Medical Code Representation [Y.Choi, 2016]

Schema of Skip-Gram.

Patient Representation: sum all the medical codes’ embedded vectors
appearing for a patient [E.Choi, 2016a].

*Theoretical information are provided in Appendix.

7



Introduction Methodology Results Conclusion and Perspectives References

Med2Vec

Multi-Layer Perceptron x Natural Language Processing
Visit Representation [E.Choi, 2016b]

Schema of Med2Vec Algorithm.

Patient Representation: sum all the visit representations.

*Theoretical information are provided in Appendix.
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Med2Vec

Multi-Layer Perceptron x Natural Language Processing
Visit Representation [E.Choi, 2016b]
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Deep Patient

Denoising Stacked Autoencoder
Patient Representation [Miotto, 2016b]

Schema of an Autoencoder.

*Theoretical information are provided in Appendix.
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Evaluation of Patient Representations

Clustering

Clustering Methods
1. K-means
2. Gaussian Mixture Model

Performance:
1. Metric: silhouette score and Davies-Bouldin index
2. Visualization: PCA and t-SNE

Reliability: Chi-squared test on the clusters
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Settings

Data

VICAN study [Bouhnik, 2015]

Female patients with Breast Cancer

1,304,361 events, 6111 patients (213 visits in average)

3407 unique medical codes

Need of Representation Learning Tools !
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Settings

Learning

1. Representation Learning
▶ Gridsearch of the hyperparameters
▶ Training of the hyperparameters

2. Clustering Task
▶ Gridsearch of the optimal number of clusters

▶ 10-folds CV
▶ Maximization of the silhouette score on validation sample

▶ Training of the clusters
▶ 10-folds CV
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Performance

Training Sample Validation Sample
Silhouette
Score ↑

Davies-
Bouldin ind. ↓

Silhouette
Score ↑

Davies-
Bouldin ind. ↓

Skip-Gram 0.6 (0.005) 0.34 (0.005) 0.6 (0.006) 0.344 (0.02)
Med2Vec 0.55 (0.004) 0.3 (0) 0.54 (0.006) 0.31 (0.005)
Deep Patient 0.98 (0) 0.13 (0.005) 0.98 (0.002) 0.13 (0.007)

Average metrics (std) over the 10-folds for the k-means clustering task.

Visualization through PCA and t-SNE of the k-means clusters.

13



Introduction Methodology Results Conclusion and Perspectives References

Performance

Training Sample Validation Sample
Silhouette
Score ↑

Davies-
Bouldin ind. ↓

Silhouette
Score ↑

Davies-
Bouldin ind. ↓

Skip-Gram 0.6 (0.005) 0.34 (0.005) 0.6 (0.006) 0.344 (0.02)
Med2Vec 0.55 (0.004) 0.3 (0) 0.54 (0.006) 0.31 (0.005)
Deep Patient 0.98 (0) 0.13 (0.005) 0.98 (0.002) 0.13 (0.007)

Average metrics (std) over the 10-folds for the k-means clustering task.

Visualization through PCA and t-SNE of the k-means clusters.
13



Introduction Methodology Results Conclusion and Perspectives References

Clinical Reliability

Skip-Gram Med2Vec Deep Patient
Partial Mastectomy <0.05 (0) 0.07 (0.04) <0.05 (0.02)
Mastectomy <0.05 (0) 0.37 (0.13) <0.05 (0.01)
Axillary Surgery <0.05 (0) <0.05 (0) 0.7 (0.23)
Chemotherapy Y/N <0.05 (0) <0.05 (0) 0.5 (0.27)
Chemotherapy Setting <0.05 (0) <0.05 (0) <0.05 (0.03)
Chemotherapy Regimen <0.05 (0) <0.05 (0) 0.1 (0.22)
Targeted Therapy Y/N 0.87 (0.12) <0.05 (0) 0.6 (0.31)
Targeted Therapy Setting 0.7 (0.01) <0.05 (0) 0.7 (0.2)
Targeted therapy Regimen 0.34 (0.12) <0.05 (0) 0.6 (0.31)
Radiotherapy Y/N <0.05 (0.03) <0.05 (0) 0.4 (0.23)
Radiotherapy Setting <0.05 (0.21) <0.05 (0) <0.05 (0)
Endocrine Therapy Y/N <0.05 (0.01) <0.05 (0) 0.2 (0.2)
Endocrine Therapy Setting <0.05 (0.03) <0.05 (0) <0.05 (0)
Endocrine Therapy Regimen <0.05 (0) <0.05 (0) <0.05 (0)
BC Sub Type <0.05 (0) <0.05 (0) 0.2 (0.12)
Nodal status <0.05 (0.01) <0.05 (0) 0.06 (0.07)
Metastatic <0.05 (0) <0.05 (0) <0.05 (0)

Average (std) of Chi-squared test p-values between the k-means clusters and the BC
characteristics obtained on 5 random sub samples.
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Conclusion

Assessing the quality of RL tools only on empirical metrics is not
sufficient;

Unsupervised study: methods with higher value of silhouette score
does not necessarily align with patients’ clinical reality;

Need of evaluation metrics assessing both the performance and the
consistency of patient RL tools.

Future works

1. Develop an empirical metric to evaluate both performance and
reliability of RL tools;

2. Develop an intrinsically interpretable RL tool.
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Appendix

EHR

Notation

Figure: An example of EHR.

V = {v1, . . . , vn};
j-th visit: vj = {d j

1, d j
2, . . . , d j

kj
};

vj ⊆ C, C = {c1, . . . , c|C|};
L =

∑n
t=1 |vt |.

n = 3
k1 = 3, k2 = k3 = 2

L = 7
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Appendix

Skip-Gram Algorithm

[Y.Choi, 2016]

Medical representation: ν(c)

1
L

L∑
l=1

∑
−w≤j≤w ,j ̸=0

log p(ct+j |ct), (2)

with w representing the size of the context window and

p(ct+j |ct) = exp(ν(ct+j)T ν(ct))∑|C|
c=1 exp(ν(c)T ν(ct))

. (3)

Patient representation [E.Choi, 2016a]

eSG =
n∑

t=1

kt∑
j=1

ν(d t
j ) ∈ Rm. (4)
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Appendix

Med2Vec Algorithm

[E.Choi, 2016b]

Visit representation
1. Intermediate visit representation given a visit v̄t ∈ {0, 1}|C|

ut = ϕ(Wc v̄t + bc) ∈ Rm′
, (5)

with ϕ(x) = max{0, x}, Wc ∈ Rm′×|C| and bc ∈ Rm′ .

2. Concatenation with demographic information dt ∈ Rd

νt = ϕ(Wv [ut , dt ] + bv ) ∈ Rm, (6)

with Wv ∈ Rm×(m′×d) and bv ∈ Rm.

Patient representation

eMed =
n∑

t=1
νt ∈ Rm. (7)
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Appendix

Deep Patient Algorithm

[Miotto, 2016b]

Patient representation

Denoising Stacked Autoencoder

1. Masking Noise algorithm on the input Ṽ ∈ RL.

2. Encoder
y = fθ(Ṽ ) = s(W Ṽ + b), (8)

with s(·) a non-linear transformation, W ∈ Rm×L and b ∈ Rm.

3. Decoder
z = gθ′(y) = s(W ′y + b′), (9)

with W ′ ∈ RL×m and b′ ∈ Rm.
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Appendix

Data

VICAN study [Bouhnik, 2015], a national survey on French cancer
survivors
Inclusion Criteria of patients : (i) Female, (ii) diagnosed with Breast
Cancer, (iii) who have reached the age of majority and (iv) have
undergone surgery
Exclusion criteria of patients : affected by another form of cancer
1,304,361 events, 6111 patients with an average of 213 visits (min
4, max 1111)
3,407 medical codes at first
▶ 2447 diagnosis (ICD-10 Classification)
▶ 1977 procedures (Anatomical Therapeutic Chemical, ATC)
▶ 1043 medications (Classification Commune des Actes Médicaux,

CCAM)
Grouping of the medical codes based on their hierarchical structure
[Y.Choi, 2016], [E.Choi, 2016a]
▶ 2 digits
▶ It remains 3,407 unique medical codes
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Appendix

Experimental Settings

Experimental settings. ⋆The complementary tools provided on Github.
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Appendix

Experimental Settings

Epoch Learning
Rate Tested Parameters

Skip-Gram 40 1e-3
Window Size: {5, 10}
# False neighbors: {5, 10}
Embedding Dim: {10, 20, 50, 100}

Med2Vec 5 1e-6
Temporary Dim: {20, 50, 100}
Final Dim: {20, 50, 100}
Window Size: {1, 3, 5}

Deep
Patient 100 1e-3

Embedding Dim: {10, 20, 50, 100}
# Layers: {1, 3, 5}
Corruption Rate: {0.01, 0.05, 0.01}

Settings for the Gridsearch step, optimal parameters are in bold.
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Appendix

Performance results

Training Sample Validation Sample
Silhouette

Score
Davies-

Bouldin ind.
Silhouette

Score
Davies-

Bouldin ind.
K-means

SG 0.6 (0.005) 0.34 (0.005) 0.6 (0.006) 0.344 (0.02)
M2V 0.55 (0.004) 0.3 (0) 0.54 (0.006) 0.31 (0.005)
DP 0.98 (0) 0.13 (0.005) 0.98 (0 002) 0.13 (0.007)

Gaussian Mixture Model
SG 0.37 (0.01) 0.52 (0.008) 0.35 (0.01) 0.52 (0.01)
M2V 0.06 (0.06) 1.1 (0.4) 0.3 (0.09) 0.8 (0.2)
DP 0.9 (0) 0.62 (0.01) 0.9 (0.005) 0.6 (0.09)

Average (standard deviation) results obtained on clustering over the 10−folds CV, for
Skip-Gram (SG), Med2Vec (M2V) and Deep Patient (DP) algorithms.

23


	Introduction
	Electronical Health Records
	Representation Learning
	Objectives

	Methodology
	Skip-Gram
	Med2Vec
	Deep Patient
	Evaluation of Patient Representations

	Results
	Settings
	Performance
	Clinical Reliability

	Conclusion and Perspectives
	References
	Appendix
	Appendix
	EHR
	Skip-Gram Algorithm
	Med2Vec Algorithm
	Deep Patient Algorithm
	Data
	Experimental Settings
	Performance results



